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Abstract. In the article, a mathematical model has been constructed and investigated by analyzing the problem

of disintegration during torsion of the cylindrical shaped piezo element in the linear piezoelectric engine. Nonlinear

differential equations expressing the expansion of the disintegration surface formed during the torsion of the piezo

element under the influence of variable torsional moment have been formulated. Guidelines determining the

initial degradation period for the development of the disintegration process have been obtained, and based on the

developed mathematical model, displacement curves of the disintegration surface motion have been established.
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1 Introduction

Despite the creation of a large number of piezoelectric motors according to their constructive
structure, application areas, output parameters and other indicators (Ryabtsov, 2013; Samarin,
2006; Vishnevsky et al., 1993; Hasanov et al., 2022; Hasanov & Gardashov, 2017; Hasanov et al.,
2021; Hasanov, 2019, 2018; Gayvorovskaya & Rybalov, 2015), the construction and application
of a new linear micro piezoelectric motor is one of the most important issues in the creation
of high-precision and high-speed devices. For this purpose, a new controllable linear micro
piezoelectric motor construction with high-precision linear motion in the micrometre range was
proposed (Hasanov et al., 2022, 2021; Hasanov, 2019).

In (Ryabtsov, 2013; Hasanov et al., 2022; Hasanov, 2019), the linear micro piezoelectric
motor intended for application in optical transmission communication devices and the schematics
reflecting the structure of the piezoceramics that make up it were presented. The proposed
linear micro piezoelectric motor consists of a motion guide element, a piezoelectric element in a
cylindrical shape and other auxiliary parts.

Structurally, the piezo element of the linear micro piezoelectric motor is cylindrical and
consists of longitudinal wave-feeding electrodes separated by the circumference and height of
the cylinder. The construction of the cylindrical piezo element consists of electrodes that create
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transverse oscillations along the circumference of the cylinder and longitudinal oscillations along
its height. Homonyme electrodes are connected and connected to a food source with a high
resonance frequency. The resonance frequency of the food source should correspond to the
resonance frequency of mechanical oscillations (Hasanov, 2019; Hasanov et al., 2024).

The working principle of the mentioned linear micro piezoelectric motor is obtained as a result
of the combined effect of both oscillations. As a result, as a result of both mechanical oscillations
(height and width), the same points of the cylindrical piezo element are simultaneously excited
by two types of oscillations. The study of the working characteristics of the cylindrical piezo
element of the linear micro piezoelectric motor working with the mentioned principle, including
its fatigue, is one of the most relevant issues for piezoelectric motors.

2 Essence analysis of fatigue degradation of piezoelectric
elements

As it can be seen if two oscillations are used in both cases, including excitation with longitudi-
nal waves along the height of the cylinder, the amplitude of transverse mechanical oscillations
increases by 2-3 times. However, depending on the working process, the mechanical stresses
caused by tension and torsion in the cylindrical piezo elements used in piezoelectric motors
change their value and direction. Therefore, the period of stress caused by external forces whose
value changes depending on time is called stress.

Experience indicates that piezo elements whose strength is not broken in the first cycle of
loading can be broken when the number of loading cycles reaches a certain value, that is, the
strength of the piezo element depends on the number of operating cycles.

The strength limit of piezo elements working under the influence of repeatedly changing
mechanical stresses is much smaller than the strength limit in the case where the stresses do not
change. The essence of the fatigue degradation caused by such stresses is as follows:

• Microcracks invisible to the naked eye appear as a result of constructive, structural or
technological factors in the zone where the greatest stresses are generated in the case of
fatigue degradation of piezo elements;

• With a long-term change of voltages, the crystals located on the edges of the cracks begin
to disintegrate, and the resulting cracks deepen inward;

• Under the influence of periodic stresses, the crystals on the cracks rub against each other
and that surface becomes smooth; As a result of the gradual growth of the cracks, the
cross-sectional area decreases and, in connection with this, the value of the stress gradually
increases, when the value of the stress reaches a dangerous level, the piezo element suddenly
stops;

• The phenomenon of fatigue-induced degradation depends on the structure of molecules
and crystals of the piezo element. Therefore, the assumption that the geometrical volume
of the piezo element is completely filled (the assumption of the integrity of piezo elements)
cannot be used in the interpretation of fatigue strength, etc.

The issue of calculating the fatigue degradation of piezoceramic piezo elements subjected
to torsional deformation due to the effect of alternating stresses is considered to be one of the
urgent issues in the design of piezoelectric motors. The development of modern technologies
requires consideration of new factors (reasons) in these matters. One of the main factors here
is the fatigue damage of piezo elements, that is, the formation and accumulation of defects of
various types.

The gradual degradation process in piezo elements over time is associated with their long-
term durability. Therefore, studying and researching the dissolution process is considered one of
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the most urgent problems. The strength of piezo elements directly depends on the nature of the
dissolution process occurring in the piezo elements of piezoelectric motors, making the study of
the dissolution process a necessity.

The structure of the piezo element has a significant influence on the degradation process.
For this reason, the degradation can be complex and unstable. Moreover, the dissolution process
is strongly dependent on the influence of external factors. These can be the nature of loading,
thermal regime, surface effects and other reasons. All these reasons affect the nature of the
stress state of the piezo element. This, in turn, leads to disintegration. One type of breakdown
is related to the arbitrary type of defects that originate and accumulate in the piezo elements,
which is expressed by the term total damage. Such degradation is called scattered degradation.
If the stress is homogenous (for example, in the tension of the rod), then the damage increases
regularly with volume. If the stress field is heterogeneous, it is necessary to distinguish two
stages for the analysis of the dissolution process: latent dissolution (incubation period) and
apparent dissolution stages.

Microcracks and other defects are formed in the stage of latent degradation (in a certain time
interval). At the moment of , local dispersion already occurs. Microcracks and other defects
scattered around such local disintegration areas merge to form a macrocrack. For example,
experiments conducted for the fatigue degradation of a piezo element indicate that in the initial
stage of failure, damage accumulates continuously and the damage becomes a diffuse character.
At the end of this stage, macrocracks are formed and they develop intensively in the next
moments and the piezoelectric motor is damaged (Webber et al., 2017; Zhang & Gao, 2004;
Koruza et al., 2018; Wei & Jing, 2017; Salazar et al., 2020).

Two types of approaches are used to investigate long-term dispersion problems. The first
of these is the criterion approach. This type of approach is based on the creation of criteria
that determine the long-term decay process of piezo elements. A measure known as “equivalent
stress” is used to establish such criteria. An analytical review of studies using the criterion
approach is given in (Akhmedov & Yusubova, 2022; Piriev, 2018). This approach is mostly used
in problems of robustness investigation for time-independent stress tensor components.

3 A mathematical model of fatigue degradation of a
cylindrical piezo element

As a result of numerous studies conducted on various piezo elements, L.M. Kachanov and
Y.N.Rabotnov proposed a second approach, the “kinetic method”, for the study of long-term
durability issues (Piriev, 2018). The basis of this approach is the inclusion of a function called
the scalar “damage parameter”, which characterizes the state of the piezo element at an ar-
bitrary value of the operating time t. The value of the included function corresponds to the
initial state of the piezo element (before use), and the value corresponds to the state of complete
disintegration of the piezo element (Piriev, 2023; Wang et al., 2016, 2018; Shibata et al., 2018;
Webber et al., 2017; Zhang & Gao, 2004; Koruza et al., 2018; Wei & Jing, 2017; Salazar et al.,
2020).

The description of a cylindrical piezo element made of a piezoceramic piezo element with
outer and inner radius b, a, respectively, under the influence of a periodic normal force F (t) and
a torque M(t) is as follows:

First of all, it is necessary to determine the damping coefficient corresponding to the forces
acting on the piezo element:

The mass of the part with length dx of the piezo element with density ρ is:

dm = ρAdx. (1)

Here, A is the area of the ring formed in the cross section of the piezo element.
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Denoting the displacement of the current section of the piezoelectric element along the axis
by u, the following equation is obtained based on the equilibrium condition of the element dx:

ρA
∂2u

∂t2
=
∂N

∂x
.

From another side the element has an elongation as

ε =
∂u

∂x
=

N

EA
. (2)

If N = 0 is subtracted from both obtained equations, then we obtain

∂2u

∂x2
=

ρ

E

∂2u

∂t2
, (3)

where ρ is the density of the piezo element and E is the modulus of elasticity. In the obtained
equation, the sought quantity u becomes a function depending on two free variables x and t.

Solution of the equation (3) is accepted as

u = X sin(ω0t), (4)

where X is a function of only one free variable x and ω0 is frequency of free oscillations. If
considered (4) in equation (3) we have

d2X

dx2
+
ρω2

0

E
X = 0,

where

X = A sin

√
ρω2

0

E
x+B cos

√
ρω2

0

E
x. (5)

The constants A and B are determined based on the boundary conditions. If it is assumed
that the left end of the piezo element is fixed and the right end is free: X = 0, x = 0 and dZ

dz = 0,
x = l. Thus,

B = 0; A cos

√
ρω2

0

E
l = 0.

The below formula

ω0l

√
ρ

E
=
π

2
(2n− 1)

is obtained from the last expression. Here, n is an arbitrary integer. This expression allows one
to determine a series of successive values of the oscillation frequency specific to the length of the
piezo element:

ω0 =
π

2l
(2n− 1)

√
E

ρ
. (6)

Thus, a piezoelectric element corresponding to the resonant state has an infinite number of
oscillation frequencies.

In the elastic case, the law governing the period of change of tangent and normal stresses
depending on time is as follows

ω0 =
π

2l

√
E

ρ
. (7)

By substituting expression (6) into expression (5), it is possible to determine the form of
oscillations corresponding to different values of n
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X = A sin
(2n− 1)πx

2l
, (8)

u = A sin
(2n− 1)πx

2l
sin(ω0t). (9)

Depending on the values of n, different oscillation forms can be constructed using formulas
(8) and (9). The emergence of different forms of oscillation is determined by the initial conditions
of the excitation of a specific oscillation.

Similarly, using the equilibrium condition of moments of inertia and internal forces during
the torsion of the piezo element: the differential equation of torsional oscillations is written as
follows

∂2ϕ

∂t2
=
GJ0
I0

∂2ϕ

∂x2
, (10)

where I0 is the mass moment of inertia per unit length, J0 is the polar moment of inertia of
the cross section, G is the modulus of elasticity in sliding, and φ is the angle of rotation formed
during the torsion of the cylindrical piezo electric element.

Since the height deformation in the piezo element driving the piezoelectric motors is much
smaller than the torsional deformation, it will be assumed here that the collapse occurs due to
the torsional stress. For this purpose, using the dynamic coefficient of the system, the stress in
the cross-section of the piezo element can be written as follows

τd = βτs, (11)

where τd is the tangential stress caused by the excitation force in the cross section of the piezo-
electric element, τs is the stress caused by the static effect of the maximum value of the excitation
force, and β is the dynamic coefficient of the system and is shown in (Figure 1).

β =
1

1 −
(
ω
ω0

)2 , (12)

where ω is the frequency of the exciting oscillation. If the comparison of frequencies ω and ω0

shows that there is a danger of resonance, depending on the conditions, one of the frequencies
can be changed by making a simple design change.

The amplitude value of the exciting stress during torsion is given as:

τs =
M

Jr
r (13)

where r is the current radius. Substituting (13) into (11) yields the dynamic stress

τd = β · M
Jr
r. (14)

Here, r represents the current radius, and Jr denotes the moment of inertia at the cross-section

Jr =
π

2
(b4 − a4). (15)

As seen from equation (13), the maximum induced stress on the outer surface (r=b) of the
piezo element is given by the formula

τs,max =
M

Wk
;Wk =

πa4

2b

((
b

a

)4

− 1

)
, (16)

where Wk represents the torsional resistance moment.
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Considering the degradation criterion as follows

τs +K∗τs =
τ0
β
, (17)

where τ0 represents the sudden strength limit, K∗ is the damage operator, and in the case of
monotonous increase in loading process, the self-elasticity takes the form of an integral operator
(Akhmedov & Yusubova, 2022; Piriev, 2018, 2023; Wang et al., 2016)

K∗τs =

∫ t

0
K(t− ξ)τs(ξ)dξ. (18)

Here, K(t− ξ) is called the damage kernel.

The initial degradation time and the equation for the degradation front will be derived from
degradation criterion (17). For this purpose, if (18) is expressed in the strength criterion (17),
the following integral equation is obtained

τs(t, t) +

∫ t

0
K(t− ξ)τs(ξ)dξ =

τ0
β
. (19)

The initial degradation will occur on the outer surface (r = b) of the piezo element, where the
maximum tensile stress is present. The initial degradation time t1 is referred to as the hidden
degradation time of the piezo element, and to find this time, equation (16) is considered in (17)

M

Wk
(1 +K∗ · 1) =

τ0
β
. (20)

From equations (18) and (20), the following equality is obtained∫ t1

0
K(ξ)dξ =

τ0Wk

βM
− 1. (21)

Since the hidden degradation time is positive, the right side of equation (21) must also be
positive. Using this condition, the restriction for the intensity of the moment M is determined
as follows

M <
τ0Wk

βM
. (22)

In cases, where the value of the torsional moment is greater than τ0Wk
βM , the degradation will

occur suddenly. Therefore, it is assumed that condition (22) is satisfied in subsequent stages of
solving the problem.

To derive an explicit formula for the incubation period depending on the type of damage
kernel, the latent degradation times for the three damage kernel cases (constant, exponential,
and singular) are determined using (21)



K(t− ξ) = K0 = const t1 =
1

K0

(
τ0Wk

βM
− 1

)
K(t− ξ) = K0e

−m(t−ξ) t1 =
1

m

[
1 − K0

m

(
τ0Wk

βM
− 1

)]−1

K(t− ξ) = K0(t− ξ)−α, 0 < α < 1 t1 =

[
1 − α

K0

(
τ0Wk

βM
− 1

)] 1
(1−α)

.

(23)

After the initial fracture, a crack zone forms on the outer surface of the piezo element (Figure
1).
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Figure 1: Diagram of the cross-section of the piezo element.

The boundary between the distribution area and the undistributed area is called the dis-
tribution front (Wang et al., 2018). The character of the movement of the distribution front
determines the intensity of the evolving dispersed distribution process. It is assumed that the
work capacity of the piezo element in front of the distribution front is completely lost. After
the distribution front is formed, the section of the piezo element consists of two regions. The
first is the region in the form of a ring with an internal radius a and an external radius c(t)
(undistributed part), and the external region, called the distribution area, has an internal radius
c(t) and an external radius b. For both regions, the moment of inertia is determined as

J1 =
π

2

(
c4(ξ) − a4

)
, (24)

J1 =
π

2

(
b4 − c4(ξ)

)
. (25)

Using these formulas and (13), the following equations for the tensile stresses in both regions
are obtained

τ
(1)
st =

2M1(ξ)

πb3
(
f4(ξ) − f40

)f(t), (26)

τ
(2)
st =

2M2(ξ)

πb3 (1 − f4(ξ))
f(t). (26)

Here, the dimensionless quantities are defined as follows

f(ξ) =
c(ξ)

b
; f(t) =

r(t)

b
; f0 =

a

b
.

The stiffness of the piezo element is characterized by the relative torsion angle θ. The torsion
angle per unit length is called the relative torsion angle and is expressed as

θ =
M

GJr
. (27)

It is assumed that the elastic modulus of the internally twisted region isG1, and the externally
distributed region is G2. When the piezo element is subjected to the torsion moment M(t), the
torsion moments carried by the internal and external regions are denoted as M1(t) and M2(t)
respectively, so that

M(t) = M1(t) +M2(t). (28)

Since both regions work equally, the relative torsion angles must be equal, i.e.

θ1 = θ2. (29)

From equations (27) and (29), and considering that the internal region is subjected to inheritance
type damage, we obtain

1

G∗
1

· M1(ξ)

J1(ξ)
=

M2(t)

G2J2(t)
. (30)
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Here,
1

G∗
1

=
1

G1
(1 +K∗). (31)

Substituting (31) into (30), the following equality is obtained (Piriev, 2018)

1

G1
(1 +K∗) · M1(ξ)

f4(ξ) − f40
=

M2(t)

G2(1 − f4(t))
, (32)

where

K∗ · M1(ξ)

f4(ξ) − f40
=

∫ t

0
K(t− ξ) · M1(ξ)

f4(ξ) − f40
dξ. (33)

From equations (32) and (33), the following integral equation is obtained

g

(
M1(ξ)

f4(t) − f40
+

∫ t

0
K(t− ξ) · M1(ξ)

f4(ξ) − f40
dξ

)
=

M2(t)

1 − f4(t)
, (34)

where g = G2
G1

.

After determining M2(t) = M(t) −M1(t) from (28), substituting the obtained expression
into (34), (26), and (19), the following system of integral equations is obtained

M̃(t)
f4(t)−f40

+
∫ t
0 K(t− ξ) M̃(t)

f4(ξ)−f40
dξ = 1−M̃(t)

g(1−f4(t)) ,

M̃(t)
f4(t)−f40

+
∫ t
0 K(t− ξ) M̃(t)

f4(ξ)−f40
dξ = γ

f(t) ,
(35)

where

M̃(t) =
M1(t)

M(t)
; γ =

πb3τ0
2βM

are the introduced dimensionless quantities. By subtracting the equations in system (35) side
by side, the dimensionless torsional moment M̃(t) is found as:

M̃(t) =
f(t) − γg(1 − f4(t))

f(t)
. (36)

Considering (36) in the second equation of (35), the following integral equation is obtained

f(t) − γg(1 − f4(t))

f(t)(f4(t) − f40 )
+

∫ t

0
K(t− ξ)

f(ξ) − γg(1 − f4(ξ))

f(ξ)(f4(ξ) − f40 )
dξ =

γ

f(t)
. (37)

It is clear that the maximum value of the function f(t) is unity. However, for some inter-
val values of f(t), at a given moment in time, the velocity of motion of the dispersion front
determined by its derivative may be zero. This moment is precisely considered as the final or
complete dispersion time.

Equation (37) expressing the motion of the dispersion front is called the second type Volterra
non-linear integral equation. Solving this equation for the general form of the kernel of the
integral presents a complex mathematical problem. However, obtaining the solution of the
integral equation in an explicit analytic form is possible for relatively simple special cases of
kernels. Such an approach allows analyzing the quality of the studied dispersed dispersion
process and determining its characteristic properties. Therefore, initially assuming the kernel
as K(t− ξ) = 1, the equation is differentiated with respect to t on both sides, yielding:

df

dt
= − f(f4 − f40 )(f − γg(1 − f4))

f(1 + 4γgf3)(f4 − f40 ) − (5f4 − f40 )(f − γg(1 − f4)) + γ(f4 − f40 )2
. (38)
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Similarly, for the exponential kernel K(t − ξ) = e−m(t−ξ), the differential equation is obtained
by differentiating with respect to t:

df

dt
= −

mf(f4 − f40 )
[
γ(f4 − f40 ) − (f − γg(1 − f4))

]
f(1 + 4γgf3)(f4 − f40 ) − (5f4 − f40 )(f − γg(1 − f4)) + γ(f4 − f40 )2

(39)

For differential equations (38) and (39), the dimensionless initial condition is given by

f(t = t1) = 1. (40)

Since equations (38) and (39) are ordinary differential equations, numerical methods are
used for their solution. One such method is the Runge-Kutta method. In MATLAB, there are
two built-in functions for solving differential equations using the Runge-Kutta method: ”ode23”
and ”ode45”. The ”ode23” function represents second and third order Runge-Kutta integration,
while the ”ode45” function utilizes fourth and fifth order Runge-Kutta integration.

To analyze the development of the fracture surface, β = 5.26 is taken for the dynamic factor
in equation (23) and t1 = 3 is chosen. Equation (38) is then solved with the initial condition
f(t1) = 1, considering the thickness of the piezoelectric element wall, using the MATLAB
”ode45” function. This provides deviations characterizing the expansion of the fracture surface,
which are depicted in Figure 2.

Figure 2: Deviation of the fracture surface

The analysis of Figure 2 shows that as the thickness of the piezoelectric element wall increases,
the speed of the fracture surface decreases. This is consistent with the fact that when the
thickness of the wall is large, its resistance to external forces increases, thus prolonging the
fracture process.

The influence of the thickness of the piezoelectric element wall with f0 = 0.7 on the dynamic
factor’s effect on the fracture speed is depicted in Figure 3. As seen from Figure 3, an increase
in the dynamic factor leads to a sharp increase in the fracture speed.

Figure 3: Deviations in the movement of the fracture surface
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For the values f0 = 0.7 and β = 3.03 of the piezoelectric element wall thickness, the effect
of the parameter m on the fracture process is given in Figure 4.

Figure 4: Fracture surface deviations

As seen from Figure 4, in the case of an exponential kernels, the parameter m has a certain
influence on the fracture of the piezoelectric element. Specifically, an increase in the value of
this parameter accelerates the expansion of the fracture surface at certain intervals of time.

4 Conclusion

The mathematical model is developed and solved for the formation and development of the
fracture zone during the torsion of cylindrical piezo elements, which are one of the main elements
of micro piezo motors. The problem was examined under the assumption of constant elasticity
modulus. Additionally, formulas for the incubation period and integral equations for the motion
of the fracture surface are derived. Specific cases are analyzed for their qualitative characteristics.
In general, deviations representing the movement of the fracture surface are formulated using
numerical calculation methods.
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